Crystal Structures and Solid-State Photochemistry of an Unsymmetrically Substituted Dibenzobarrelene and Its Two Photoproducts (Dibenzosemibullvalenes)

By Miguel Garcia-Garibay, John R. Scheffer, James Trotter and Fred C. Wireko
Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1 Y6

(Received 28 February 1989; accepted 11 September 1989)

Abstract

The photochemical rearrangement of an unsymmetrical 11,12-diester derivative of dibenzobarrelene in the solid state has been studied by crystal structure analyses of the starting material and its two regioisomeric photoproducts. The photochemical behaviour of the starting material has been examined from crystal-lattice and molecular-conformational points of view. Crystal data are: $T=295 \mathrm{~K}$, Mo $K \alpha_{1}$, $\lambda=0.70930 \AA$, or $\mathrm{Cu} K \alpha_{1}, \lambda=1.54056 \AA$; isopropyl methyl 9,10 -dihydro-9,10-ethenoanthracene-11,12dicarboxylate ($\mathrm{Me} / /^{\prime} \mathrm{Pr}$) $, \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}, M_{r}=348 \cdot 40$, triclinic, $\quad P \overline{1}, \quad a=9.483(3), \quad b=12.806(4), \quad c=$ 8.430 (2) $\AA, \quad \alpha=92.85$ (3),$\quad \beta=109.60$ (3),$\quad \gamma=$ $103.05(3)^{\circ}, \quad V=930.6(5) \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.243 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \mu=0.78 \mathrm{~cm}^{-1}, \quad F(000)=368, \quad R=$ 0.044 for 1741 observed reflections; 8d-isopropyl 8 c -methyl $\quad 4 \mathrm{~b}, 8 \mathrm{~b}, 8 \mathrm{c}, 8 \mathrm{~d}$-tetrahydrodibenzo $[a, f]$ cyclopropa [cd]pentalene-8c, 8 d -dicarboxylate ($\mathrm{Me} / / \mathrm{Pr}-\mathrm{pl}$), $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}, \quad M_{r}=348 \cdot 40$, monoclinic, $P 2_{1} / a, \quad a=$ 8.854 (3),$\quad b=13.872$ (4),$\quad c=15.364$ (5) $\AA, \quad \beta=$ $105 \cdot 32(3)^{\circ}, \quad V=1820(1) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.271 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \mu=0.81 \mathrm{~cm}^{-1}, \quad F(000)=736, \quad R=$ 0.046 for 1249 observed reflections; 8c-isopropyl 8d-methyl $4 \mathrm{~b}, 8 \mathrm{~b}, 8 \mathrm{c}, 8 \mathrm{~d}$-tetrahydrodibenzo $[a, f$ fcyclopropa $[c d]$ pentalene- $8 \mathrm{c}, 8 \mathrm{~d}$-dicarboxylate ($\mathrm{Me} / / \mathrm{Pr}-\mathrm{p} 2$), $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}, \quad M_{r}=348 \cdot 40$, monoclinic, $P 2_{1} / n, \quad a=$ 15.029 (2),$\quad b=8.155$ (1), $\quad c=14.561$ (2) $\AA, \quad \beta=$ $92.772(9)^{\circ}, \quad V=1782.5(4) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.298 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \mu=6.81 \mathrm{~cm}^{-1}, \quad F(000)=736, \quad R=$ 0.051 for 2065 observed reflections. The two ester carbonyl groups in $\mathrm{Me} /{ }^{\prime} \mathrm{Pr}$ show different degrees of conjugation to the central double bond, with the relevant bond lengths indicating some extent of electron delocalization over the α, β-unsaturated carbonyl system. One of the carbonyl groups in $\mathrm{Me} /{ }^{i} \mathrm{Pr}-\mathrm{pl}$ exhibits a cis-bisection conformation and hence conjugation with respect to the cyclopropane ring; however, no systematically induced bond-length asymmetry in the cyclopropane ring is apparent. No such conjugation of the cyclopropane ring to the π-acceptor substituents was observed in the structure of $\mathrm{Me} /{ }^{/} \mathrm{Pr} \mathrm{p} 2$. In general, the unsymmetrical $11,12-$ diester derivatives $\left(\mathrm{CO}_{2} R_{1} \neq \mathrm{CO}_{2} R_{2}\right)$ yield regioisomeric dibenzosemibullvalenes upon photolysis;

the product ratios of the regioisomers obtained from solution and solid-state photolysis are significantly different, with higher regioselectivities obtained in the solid-state photolysis than in solution. The photochemical pathway leading to the formation of the major product in the solid state could not be rationalized from electronic considerations based on the biradical stabilization differences (brought about by the conformational rigidity of the ester groups in the solid state) at the central vinyl C atoms. The preferred reaction pathway is consistent with steric packing factors estimated from (a) qualitative visual inspection of the local packing differences around the ester groups, (b) calculation of the van der Waals intermolecular steric energy as a result of the movement of the ester groups, and (c) superposition of the structures of major ($\mathrm{Me} /{ }^{/} \mathrm{Pr}-\mathrm{pl}$) and minor ($\mathrm{Me} /{ }^{i} \mathrm{Pr}-\mathrm{p} 2$) products on the structure of the starting material in order to determine the best molecular fit.

Introduction

The di- π-methane rearrangement is a photochemical conversion of 1,4 -dienes to vinylcyclopropanes via a radical mechanism (Zimmerman, 1980; Hixson, Mariano \& Zimmerman, 1973; Zimmerman, Keck \& Pflederer, 1976). The generally accepted mechanism proposed by Zimmerman (Fig. 1) involves an initial 2,4 -bond formation in (1), to give a 1,4 -cyclopropyldicarbinyl biradical (2). The biradical (2) then undergoes bond rearrangement to yield a 1,3biradical (3) which subsequently closes to give the final structure (4). Dibenzobarrelenes of general structure (5) (Fig. 1) may be regarded as cyclic multichannel di- π-methane substrates and have been demonstrated to undergo the di- π-methane rearrangement both in solution (Ciganek, 1966) and in the solid state (Evans, Garcia-Garibay, Omkaram, Scheffer, Trotter \& Wireko, 1986; Scheffer, Trotter, Garcia-Garibay \& Wireko, 1988) via the triplet excited state. Photoproducts (8) and (8^{\prime}), which are obtained from initial vinyl-benzo bridging at centres E and E^{\prime} of (5), bear a regioisomeric relationship to each other. Consequently, the regioselective pathway leading to the formation of the major product in the

[^0]
(1)
(2)

(3)

(4)
(a)

(8)

solid state is primarily determined by the differences in the electronic and steric factors about the central vinyl C atoms and their attached ester groups.

From the electronic point of view, the regioselectivity of the rearrangement depends on the relative abilities of the ester groups to stabilize the radicals at their respective 'vinyl' C atoms following an initial vinyl-benzo bridging. If a biradical stabilization mechanism is the dominant factor determining the reaction pathway, then the major photoproduct should result from an initial vinyl-benzo bridging at the vinyl C atom bearing the ester group which is less conjugated to the central double bond. Such an initial bond formation would result in an oddelectron at the 'vinyl' C atom which bears the more conjugated ester group, a situation which is more favorable for reasons of resonance stabilization of the odd-electron (Demuth, Amrein, Bender, Braslavsky, Burger, George, Lemmer \& Schaffner, 1981).

It is well known that the intrinsic reactivity of a molecule in the solid state may in some cases be less important than the nature of the packing of neighboring molecules in the crystal lattice (Cohen, Ron, Schmidt \& Thomas, 1969; Cohen \& Schmidt, 1964; Thomas, Morsi \& Desvergne, 1977). Such packing factors may modulate or completely alter the course of an otherwise electronically favorable reaction. It is therefore reasonable to expect that the regioselectivity of the compound in the solid state might be affected by the steric packing around the ester groups in the reacting molecule and its 'fixed' lattice neighbors (Scheffer, Trotter, Garcia-Garibay \& Wireko, 1988). Thus, from the crystal-packing point of view, the pathway leading to the formation of the major product in the solid state may be determined by the relative amounts of free space (Cohen, 1975; Ohashi, Yanagi, Kurihara, Sasada \& Ohgo, 1981) around the vinyl C atoms and their corresponding ester groups.

Predictions about the preferred reaction pathway (and hence the major product) from these two factors (electronic and crystal-lattice effects) may sometimes be contrary to one another. The two points of view were thus explored independently in an effort to gain some insight into the structural aspects of the di- π-methane rearrangement, and, if possible to derive structure-reactivity relationships for the reaction occurring in the solid state. To this end, the photochemical behavior of several differently substituted dibenzobarrelenes has been studied in solution and in the solid state. Crystal structures of some of the dibenzobarrelenes and their photoproducts (dibenzosemibullvalenes) have been determined and the relevant molecular and lattice information examined in the light of electronic and steric packing factors. Three of the compounds (a photoreactant
and its two photoproducts) are reported in this paper.

Experimental

The general procedures and parameters of data collection are summarized in Table 1. Intensities were measured at 295 K with a CAD-4F diffractometer, $\omega-2 \theta$ scan (extended 25% on each side for background measurement), horizontal aperture ($2.0+$ $\tan \theta) \mathrm{mm}$, vertical aperture 4 mm ; three standard reflections measured periodically. Mo $K \alpha$ (graphite monochromator) or $\mathrm{Cu} K \alpha$ (nickel-filtered) radiations were used (Table 1). Lp but no absorption corrections. The crystals scattered moderately well considering that the maximum θ values are quite high for these organic crystals; reflections with $I \geq$ $3 \sigma(I)$ represent about $39-56 \%$ of the total number of reflections measured, data/parameter ratios are about 5-7 (Table 1). $\quad \sigma^{2}(I)=S+4\left(B_{1}+B_{2}\right)+$ $(0.04 S)^{2}$, where $S=$ scan, B_{1} and B_{2} background counts. The structures were determined by direct methods with the use of MULTAN80.*

Refinement was by full-matrix least-squares methods on F, minimizing $\sum w\left[\left|F_{o}\right|-k\left|F_{c}\right|\right]^{2}$, with w $=1 / \sigma^{2}(F)$, giving uniform values of $\sum w \Delta F^{2} ; \mathrm{H}$ atoms were placed in calculated positions for $\mathrm{Me} / / \mathrm{Pr}-\mathrm{pl}$ and were refined for $\mathrm{Me} / 2 \mathrm{Pr}-\mathrm{p} 2$ and $\mathrm{Me} / / \mathrm{Pr}$ (except for the six terminal H atoms on the isopropyl ester group). Scattering factors were from International Tables for X-ray Crystallography (1974). Details of the refinements are given in Table 1.

Discussion

Final positional parameters are in Table 2, \dagger and bond lengths and angles involving non-H atoms are in Table 3. Fig. 2 shows the stereo diagrams of the three compounds with atomic numbering. Some of the aromatic rings in all three compounds show small, but not structurally significant deviations from planarity; the maximum displacement of C atoms from the respective least-squares mean planes of the most non-planar rings are: 0.009 (3) \AA for $\mathrm{Me} / / \mathrm{Pr}$, 0.019 (5) \AA for $\mathrm{Me} / \mathrm{P}^{\prime} \mathrm{Pr}-\mathrm{pl}$, and 0.011 (4) \AA for $\mathrm{Me} / \mathrm{Pr}-\mathrm{p} 2$. The dibenzobarrelene ring skeleton in

[^1]Table 1. Data-collection and refinement parameters for dibenzobarrelene and dibenzosemibullvalenes

Solvent	$\mathrm{Me} / \mathrm{P} \mathrm{Pr}$ Cyclohexane	$\mathrm{Me} /{ }^{/} \mathrm{Pr}-\mathrm{pl}$ Methylcyclohexane	$\mathrm{Me} /=\mathrm{Pr}-\mathrm{p} 2$ Dimethyl ether
Dimensions (cut fragments) (mm)	$0.25 \times 0.3 \times 0.3$	$0.2 \times 0.25 \times 0.3$	$0.25 \times 0.3 \times 0.3$
Radiation	Mo K α_{1}	Mo $K \alpha_{1}$	$\mathrm{Cu} K \alpha_{1}$
Reflections for cell No. θ range (${ }^{\circ}$)	$\stackrel{25}{12-18}$	$\begin{gathered} 25 \\ 7-12 \end{gathered}$	$\stackrel{25}{22-45}$
Intensity measurements			
$\theta_{\text {max }}\left({ }^{\circ}\right.$)	25.0	25.0	75.0
ω scan, $(a+b \tan \theta), a\left({ }^{\circ}\right)$	0.75	$0 \cdot 65$	0.75
ω scan, $(a+b \tan \theta) . b\left(^{\circ}\right)$	0.35	0.35	$0 \cdot 14$
Scan speed (${ }^{\circ} \mathrm{min}^{-1}$)	1.50-10.06	0.96-10.06	1-18-10.06
h	$-11 \rightarrow 10$	$-10 \rightarrow 10$	$-18 \rightarrow 18$
k	$-15 \rightarrow 15$	$0 \rightarrow 16$	$0 \rightarrow 10$
l	$0 \rightarrow 10$	$0 \rightarrow 17$	$0 \rightarrow 18$
Total unique reflections	3268	3204	3667
Reflections with $I \geq 3 \sigma(I)$	1741	1249	2065
\%	$53 \cdot 3$	39.0	56.3
Structure refinements			
No. of parameters refined	291	235	316
Data/parameter ratio	6.0	$5 \cdot 3$	6.5
Δ / σ mean	0.001	0.001	0.001
maximum	0.175	0.002	0.005
$\Delta \rho\left(\mathrm{e} \AA^{-3}\right)$	$-0.19 \rightarrow 0.21$	$-0.22 \rightarrow 0.29$	$-0.38 \rightarrow 0.27$
$R[I \geq 3 \sigma(I)]$	0.044	0.046	0.051
$w R$	0.049	0.048	0.057
S (goodness of fit)	1.85	1.70	$2 \cdot 10$
R (all data)	0.105	0.179	$0 \cdot 103$
Extinction, g	-	-	$5.5(9) \times 10^{3}$

$\mathrm{Me} /{ }^{\prime} \mathrm{Pr}$ is similar to that of dibenzobarrelene itself (Trotter \& Wireko, 1990). The angles external to the benzene rings ρ, mean $127 \cdot 2^{\circ}$ (Fig. 3), and the intraannular benzene-barrelene angles ε, mean 112.5°, are distorted to about the same extent as in dibenzobarrelene. The dibenzosemibullvalene ring skeletons in $\mathrm{Me} / /^{\prime} \mathrm{Pr}-\mathrm{p} 1$ and $\mathrm{Me} / /^{\mathrm{P}} \mathrm{Pr}-\mathrm{p} 2$ are very similar. The corresponding mean values for ρ and ε in the product molecules where the ring fusion is between benzene and cyclopropane are 129 and $110 \cdot 1^{\circ}$, respectively. Thus, the distortion of these angles at the fused junctions appears to be a function of ring size. In addition, the values of these angles are consistent with the observation that strain induced in the benzene ring by fusion to cycloalkanes (especially small rings) is reflected in systematic angular deformations (Allen, 1981a). Bond lengths and angles in the aromatic rings of all three compounds are close to expected values, with mean $\mathrm{C}-\mathrm{C}_{\text {aromatic }}=1.382$, $1.386,1.385 \AA$, and $\mathrm{C}-\mathrm{C}-\mathrm{C}_{\text {aromatic }}$ of 120° each for $\mathrm{Me} /{ }^{\mathrm{P}} \mathrm{Pr}$, $\mathrm{Me} / /^{\mathrm{i}} \mathrm{Pr}-\mathrm{pl}$ and $\mathrm{Me} / /^{\prime} \mathrm{Pr}-\mathrm{p} 2$, respectively. The length of the bridging double bond $(\mathrm{Cl1}=\mathrm{Cl} 2)$ in $\mathrm{Me} /{ }^{\prime} \operatorname{Pr}[1.334$ (4) \AA] is in agreement with the equivalent bridge bond length of 1.343 (5) \AA in the dicarbonitrile derivative (Oliver, Fallon \& Smith, 1986) but significantly longer $[1.316(4) \AA]$ than that in dibenzobarrelene itself (Trotter \& Wireko, 1990).

In the unsymmetrical diester derivatives, the ester groups are chemically and geometrically different in the degree of conjugation of the carbonyl groups to the vinyl double bond $(\mathrm{Cll}=\mathrm{C} 12)$. For $\mathrm{Me} / \mathrm{Pr}$, the dihedral angles $\mathrm{C} 12-\mathrm{C} 11-\mathrm{Cl} 3-\mathrm{O} 2\left(\varphi_{1}\right)$ and

Table 2. Final positional (fractional $\times 10^{4}$) and equivalent isotropic thermal parameters ($U \times 10^{3} \AA^{2}$), with estimated standard deviations in parentheses

$$
U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j} * \mathbf{a}_{i} \mathbf{a}_{j} .
$$

	x	y	z	$U_{\text {eq }}$
$\mathrm{Me} / / \mathrm{Pr}$				
Cl	9979 (3)	3397 (3)	5149 (4)	53
C2	10654 (4)	2648 (3)	4647 (4)	58
C3	9983 (4)	1565 (3)	4444 (4)	56
C4	8611 (4)	1194 (3)	4732 (4)	50
C4a	7926 (3)	1922 (2)	5213 (3)	41
C5	6617 (4)	1758 (4)	8741 (5)	77
C6	7106 (6)	2417 (7)	10315 (6)	100
C7	7776 (6)	3492 (6)	10466 (6)	100
C8	7992 (4)	3972 (4)	9116 (4)	74
C8a	7515 (3)	3335 (3)	7565 (3)	53
C9	7659 (3)	3709 (2)	5936 (3)	47
C9a	8600 (3)	3032 (2)	5411 (3)	42
C10	6430 (3)	1681 (3)	5583 (3)	45
Cl 10 a	6837 (3)	2238 (3)	7371 (4)	54
$\mathrm{Cl1}$	6026 (3)	3350 (2)	4575 (3)	43
C12	5393 (3)	2288 (2)	4382 (3)	42
C13	5300 (3)	4146 (2)	3624 (3)	42
C14	5779 (5)	5694 (4)	2280 (6)	72
C15	3854 (3)	1663 (2)	3191 (4)	46
C16	1901 (5)	1508 (4)	441 (5)	85
C17	1136 (5)	2376 (4)	-97 (6)	123
C18	2166 (7)	955 (4)	-997(7)	170
O 1	6319 (2)	4835 (2)	3146 (2)	56
O2	3992 (2)	4197 (2)	3350 (2)	59
03	3453 (2)	2009 (2)	1707 (2)	66
04	3082 (3)	902 (2)	3550 (2)	95
$\mathrm{Me} / / \mathrm{Pr}$-pl				
Cl	6941 (5)	1662 (4)	8654 (3)	55
C2	7659 (6)	2283 (3)	8189 (4)	70
C3	7540 (6)	2144 (4)	7276 (4)	68
C4	6667 (5)	1388 (3)	6815 (3)	55
C4a	5884 (5)	787 (3)	7271 (3)	40
C5	7486 (6)	- 2016 (3)	8148 (3)	63
C6	8594 (6)	-2142 (4)	8964 (4)	78
C7	8639 (6)	- 1535 (4)	9685 (3)	72
C8	7559 (5)	-791 (4)	9620 (3)	58
C8a	6436 (5)	-682 (3)	8817 (3)	43
C9	5201 (5)	111 (3)	8540 (2)	42
C9a	6021 (5)	921 (3)	8189 (3)	41
C10	5032 (5)	- 1037 (3)	7318 (3)	45
C10a	6400 (5)	-1281 (3)	8083 (3)	45
C11	4084 (5)	-312 (3)	7678 (3)	41
C12	4786 (5)	-25 (3)	6908 (3)	40
C13	2360 (6)	-389 (3)	7504 (3)	50
C14	131 (6)	55 (5)	7984 (4)	109
C15	3738 (5)	16 (4)	5963 (3)	49
C16	1746 (6)	981 (3)	4977 (3)	61
C17	472 (6)	1541 (4)	5210 (4)	107
C18	2409 (7)	1463 (5)	4301 (4)	123
O1	1847 (3)	50 (2)	8135 (2)	69
O2	1526 (3)	-798 (3)	6873 (2)	79
O3	2978 (3)	860 (2)	5827 (2)	59
04	3592 (4)	-617 (2)	5411 (2)	66
$\mathrm{Me} / \mathrm{/Pr}-\mathrm{p} 2$				
Cl	6992 (2)	3816 (5)	9057 (2)	45
C2	7792 (3)	3184 (5)	9432 (3)	52
C3	8118 (2)	1719 (6)	9130 (3)	54
C4	7655 (2)	822 (5)	8458 (2)	46
C4a	6865 (2)	1444 (4)	8076 (2)	36
C5	5729 (3)	-1881 (5)	8378 (2)	48
C6	5135 (3)	-2481 (5)	8987 (3)	55
C7	4434 (3)	-1522 (6)	9253 (3)	57
C8	4303 (2)	44 (5)	8909 (2)	47
C8a	4890 (2)	645 (4)	8275 (2)	35
C9	5701 (2)	3367 (4)	7836 (2)	36
C9a	6533 (2)	2943 (4)	8376 (2)	36
C10	6193 (2)	656 (4)	7403 (2)	34
C10a	5600 (2)	-333 (4)	8014 (2)	34
Cl	4880 (2)	2232 (4)	7785 (2)	35
C 12	5595 (2)	2094 (4)	7081 (2)	34
Cl 3	4014 (2)	3088 (5)	7539 (2)	42
C14	2552 (2)	2731 (7)	6912 (3)	59
Cl 5	5441 (2)	2624 (4)	6105 (2)	38
Cl 6	6096 (2)	2714 (5)	4636 (2)	45
C17	7059 (3)	2842 (8)	4417 (3)	66
C18	5577 (4)	1537 (7)	4024 (3)	63

Table 2 (cont.)

x	y	z	$U_{\text {eq }}$
$3400(1)$	$2038(3)$	$7233(2)$	49
$3887(2)$	$4526(4)$	$7618(2)$	76
$6104(1)$	$2116(3)$	$5596(1)$	42
$4818(2)$	$3418(4)$	$5828(2)$	65

Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with standard deviations in parentheses

	Me/ ${ }^{\text {i }} \mathrm{Pr}$	Me/ $/$ Pr-pl	$\mathrm{Me} /{ }^{\prime} \mathrm{Pr}$-p2
$\mathrm{Cl}-\mathrm{C} 2$	1.388 (4)	$1 \cdot 378$ (6)	1.394 (5)
$\mathrm{Cl}-\mathrm{C9}$ a	$1 \cdot 380$ (4)	$1 \cdot 386$ (5)	1.378 (4)
C2--C3	$1 \cdot 364$ (4)	1-392 (6)	1.372 (6)
C3-C4	1.386 (4)	$1 \cdot 382$ (6)	1.382 (5)
C4-C4a	$1 \cdot 368$ (4)	$1 \cdot 387$ (5)	1.383 (4)
C4a-C9a	$1 \cdot 397$ (4)	$1 \cdot 396$ (5)	1.399 (4)
C4a--C10	1.521 (4)	-	1.515 (4)
C4a--C12	-	1.496 (5)	-
C5-C6	1.409 (7)	$1 \cdot 383$ (6)	$1 \cdot 378$ (5)
$\mathrm{C5}-\mathrm{Cl} 0 \mathrm{a}$	1.389 (4)	$1 \cdot 387$ (5)	$1 \cdot 379$ (5)
C6-C7	1.359 (7)	1.384 (6)	1.382 (6)
C7-C8	1.373 (6)	1.392 (6)	1.383 (6)
C8-C8a	1.382 (4)	1.374 (5)	1.395 (4)
$\mathrm{C8a}-\mathrm{C} 9$	1.515 (4)	1.530 (5)	-
C8a-C10a	1.383 (4)	1.394 (5)	1.399 (4)
C8a-Cll	-	-	1.477 (4)
C9-C9a	1.523 (4)	1.513 (6)	1.486 (4)
C9-Cl1	1.536 (4)	1.543 (5)	1.541 (4)
C9-C12	-	-	1.515 (4)
C10-C10a	1.519 (4)	$1 \cdot 487$ (5)	1.521 (4)
$\mathrm{Cl} 0-\mathrm{Cl1}$	(4)	$1 \cdot 506$ (5)	
$\mathrm{C} 10-\mathrm{Cl} 2$	1.533 (4)	1.531 (5)	1.538 (4)
$\mathrm{C} 11-\mathrm{Cl} 2$	1.334 (4)	1.527 (5)	1.524 (4)
$\mathrm{C} 11-\mathrm{C} 13$	1.478 (4)	1.482 (6)	1.505 (4)
C12-C15	1.479 (4)	1.504 (5)	1.493 (4)
$\mathrm{C} 13-\mathrm{O} 1$	1.336 (3)	1.323 (5)	1.320 (4)
$\mathrm{C13-02}$	$1 \cdot 201$ (3)	$1 \cdot 195$ (5)	1.194 (4)
$\mathrm{C14-O1}$	1.445 (4)	1.475 (5)	1.450 (4)
$\mathrm{Cl} 5-\mathrm{O} 3$	$1 \cdot 310$ (3)	$1 \cdot 338$ (5)	1.336 (4)
$\mathrm{Cl} 5-04$	$1 \cdot 197$ (3)	$1 \cdot 205$ (5)	1.194 (4)
C16-C17	1.469 (6)	1.489 (6)	1.500 (6)
C16-C18	1.495 (7)	$1 \cdot 481$ (7)	1.502 (6)
$\mathrm{C} 16-\mathrm{O} 3$	1.473 (4)	1.473 (4)	1.479 (4)
$\mathrm{Me} /{ }^{/} \mathrm{Pr}$			
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C9}$	119.1 (3)	$\mathrm{Cl} 0 \mathrm{a}-\mathrm{Cl} 0-\mathrm{Cl} 2$	$106 \cdot 3$ (2)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	120.7 (3)	C5-C10a-C8a	120.2 (3)
C2-C3-C4	120.5 (4)	$\mathrm{C} 5-\mathrm{ClO}-\mathrm{Cl} 0$	127.0 (4)
C3-C4-C4a	119.4 (3)	$\mathrm{C8}-\mathrm{C} 10 \mathrm{a}-\mathrm{Cl} 10$	112.7 (3)
C4-C4a-C9a	120.4 (3)	C9-C11-C12	113.1 (2)
C4-C4a-Cl0	127.5 (3)	$\mathrm{C}-\mathrm{Cl}^{-1-\mathrm{Cl} 3}$	120.7 (3)
C9a-C4a-C10	112.2 (3)	$\mathrm{C} 12-\mathrm{Cl1-C13}$	126.1 (2)
C6-C5-C10a	118.3 (5)	C10-C12-C11	113.6 (2)
C5-C6-C7	$120 \cdot 1$ (5)	C10-C12-C15	118.4 (3)
C6-C7-C8	121.9 (5)	C11-C12-C15	127.9 (2)
C7-C8-C8a	118.5 (5)	$\mathrm{Cl1}-\mathrm{Cl} 3-\mathrm{Ol}$	110.6 (2)
C8-C8a-C9	126.4 (4)	$\mathrm{Cl1}-\mathrm{Cl} 3-\mathrm{O} 2$	$125 \cdot 3$ (3)
C8-C8a-C10a	121.0 (3)	$\mathrm{O} 1-\mathrm{Cl} 3-\mathrm{O} 2$	124.0 (3)
C9-C8a-C10a	112.6 (3)	$\mathrm{Cl2-C15-O3}$	$113 \cdot 3$ (3)
C8a-C9-C9a	105.8 (2)	$\mathrm{Cl} 2-\mathrm{Cl} 5-\mathrm{O} 4$	122.7 (3)
C8a-C9-Cl1	106.5 (2)	$\mathrm{O} 3-\mathrm{C15-O} 4$	124.0 (3)
C9a-C9-Cl1	105.7 (2)	C17-C16-C18	111.5 (4)
$\mathrm{Cl}-\mathrm{C9}-\mathrm{C4a}$	119.9 (3)	$\mathrm{C} 17-\mathrm{C} 16-\mathrm{O} 3$	107.9 (3)
$\mathrm{Cl}-\mathrm{C9}-\mathrm{C9}$	127.7 (3)	$\mathrm{C} 18-\mathrm{C} 16-\mathrm{O} 3$	$105 \cdot 7$ (4)
C4a-C9a-C9	112.4 (3)	$\mathrm{Cl} 3-\mathrm{Ol}-\mathrm{Cl} 4$	116.2 (3)
C4a-C10-C10a	106.2 (2)	C15-O3-C16	118.9 (2)
$\mathrm{C} 4 \mathrm{a}-\mathrm{Cl} 0-\mathrm{Cl2}$	$105 \cdot 2$ (2)		
$\mathrm{Me} /{ }^{/} \mathrm{Pr}-\mathrm{pl}$			
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C9} 9$	119.0 (4)	$\mathrm{C} 8 \mathrm{a}-\mathrm{Cl} 10-\mathrm{Cl} 0$	$110 \cdot 1$ (4)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	120.9 (4)	C9-C11-C10	$106 \cdot 0$ (3)
C2-C3-C4	$120 \cdot 3$ (5)	C9-C11-C12	$105 \cdot 4$ (3)
C3-C4-C4a	118.9 (4)	$\mathrm{C}-\mathrm{Cll}_{-\mathrm{Cl} 3}$	$125 \cdot 3$ (4)
C4-C4a-C9a	$120 \cdot 6$ (4)	$\mathrm{C10}-\mathrm{Cl1}-\mathrm{Cl} 2$	60.6 (3)
C4-C4a-C12	128.8 (4)	$\mathrm{Cl0}-\mathrm{Cl1}-\mathrm{Cl} 3$	122.2 (4)
$\mathrm{C} 9 \mathrm{a}-\mathrm{C} 4 \mathrm{a}-\mathrm{Cl} 2$	110.6 (4)	$\mathrm{Cl} 2-\mathrm{Cl1}-\mathrm{Cl} 3$	119.3 (3)
C6-C5-C10a	118.1 (4)	C4a-C12-C10	122.0 (3)
C5-C6-C7	$120 \cdot 8$ (5)	C4a-C12-C11	$105 \cdot 4$ (3)
C6-C7-C8	121.3 (4)	C4a-C12-C15	120.4 (4)
C7-C8-C8a	117.8 (4)	$\mathrm{Cl} 0-\mathrm{Cl2-C11}$	59.0 (3)
C8-C8a-C9	128.6 (4)	$\mathrm{C} 10-\mathrm{C} 12-\mathrm{Cl} 5$	114.6 (3)
$\mathrm{C} 8-\mathrm{C8a}-\mathrm{Cl} 0 \mathrm{a}$	$121 \cdot 2$ (4)	$\mathrm{C} 11-\mathrm{Cl2-C15}$	119.0 (3)
$\mathrm{C} 9-\mathrm{C8} a-\mathrm{ClO}$	109.9 (4)	$\mathrm{Cl} 1-\mathrm{Cl} 3-\mathrm{Ol}$	111.8 (4)

Table 3 (cont.)

C8a-C9-C9a	$105 \cdot 0$ (3)	$\mathrm{Cl1}-\mathrm{Cl3}-\mathrm{O} 2$	$124 \cdot 5$ (5)
C8a-C9-C11	102.4 (3)	$\mathrm{O} 1-\mathrm{Cl} 3-\mathrm{O} 2$	123.7 (5)
C9a-C9-Cl1	$103 \cdot 6$ (3)	$\mathrm{C} 12-\mathrm{Cl} 5-\mathrm{O} 3$	110.0 (4)
C1-C9a-C4a	$120 \cdot 1$ (4)	$\mathrm{C} 12-\mathrm{Cl} 5-\mathrm{O} 4$	$125 \cdot 2$ (4)
$\mathrm{Cl}-\mathrm{C9}-\mathrm{C} 9$	129.7 (4)	O3-C15-O4	$124 \cdot 8$ (4)
C4a-C9a-C9	$109 \cdot 8$ (4)	$\mathrm{C17}-\mathrm{Cl} 6-\mathrm{C18}$	$113 \cdot 5$ (5)
$\mathrm{Cl} 1 \mathrm{a}-\mathrm{C10}-\mathrm{Cl1}$	$106 \cdot 1$ (3)	$\mathrm{C17}-\mathrm{Cl} 6-\mathrm{O} 3$	$106 \cdot 1$ (4)
$\mathrm{C} 10 \mathrm{a}-\mathrm{C} 10-\mathrm{Cl2}$	$122 \cdot 1$ (3)	$\mathrm{C} 18-\mathrm{C16-O3}$	$109 \cdot 5$ (4)
$\mathrm{Cl1}-\mathrm{Cl} 0-\mathrm{Cl2}$	60.4 (3)	$\mathrm{Cl} 3-\mathrm{Ol}-\mathrm{Cl} 4$	$115 \cdot 2$ (4)
C5-C10a-C8a	120.8 (4)	C15-O3-C16	$117 \cdot 5$ (3)
C5-C10a-C10	128.9 (4)		
$\mathrm{Me} /{ }^{\prime} \mathrm{Pr}-\mathrm{p} 2$			
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 9 \mathrm{a}$	118.9 (4)	C8a-C10a-C10	$109 \cdot 5$ (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	120.7 (4)	C8a-C11-C9	120.9 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	120.9 (4)	C8a-C11-C12	$105 \cdot 7$ (3)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C4a}$	118.9 (4)	$\mathrm{C} 8 \mathrm{a}-\mathrm{Cl1}-\mathrm{Cl} 3$	$120 \cdot 6$ (3)
C4-C4a-C9a	120.5 (3)	C9-C11-C12	59.2 (2)
C4-C4a-C10	129.5 (3)	C9- $\mathrm{Cl1}-\mathrm{Cl} 3$	114.4 (3)
C9a-C4a-C10	109.7 (3)	$\mathrm{C} 12-\mathrm{Cl1}-\mathrm{Cl3}$	$120 \cdot 2$ (3)
C6-C5-C10a	119.3 (4)	C9-C12-C10	$105 \cdot 2$ (2)
C5-C6-C7	$120 \cdot 3$ (4)	C9-C12-C11	60.9 (2)
C6-C7-C8	$121 \cdot 2$ (4)	C9- ${ }^{\text {C12- }} 2$	119.9 (3)
C7-C8-C8a	118.7 (4)	$\mathrm{Cl}-\mathrm{Cl} 2-\mathrm{Cl} 1$	105.8 (2)
C8-C8a-C10a	[19.6 (3)	$\mathrm{Cl} 0-\mathrm{Cl} 2-\mathrm{Cl} 5$	124.9 (3)
C8-C8a-Cl1	129.5 (3)	$\mathrm{Cl1}-\mathrm{Cl} 2-\mathrm{Cl} 5$	122.5 (3)
C10a-C8a-C11	110.9 (3)	$\mathrm{Cl1}-\mathrm{Cl} 3-\mathrm{Ol}$	111.2 (3)
C9a-C9- ${ }^{\text {Cl1 }}$	122.5 (3)	$\mathrm{Cl1}-\mathrm{Cl}^{-} \mathrm{O} 2$	124.9 (3)
C9a-C9-C12	106.3 (3)	$\mathrm{O} 1-\mathrm{C} 13-\mathrm{O} 2$	123.8 (3)
C11-C9-C12	59.8 (2)	$\mathrm{Cl} 2-\mathrm{Cl} 5-\mathrm{O} 3$	110.7 (3)
$\mathrm{Cl}-\mathrm{C} 9 \mathrm{a}-\mathrm{C} 4 \mathrm{a}$	120.1 (3)	$\mathrm{Cl} 2-\mathrm{Cl} 5-\mathrm{O} 4$	124.2 (3)
C1-C9a-C9	$129 \cdot 8$ (3)	O3-C15-O4	125.1 (3)
C4a-C9a-C9	110.0 (3)	C17-C16-C18	113.4 (4)
C4a-C10-C10a	103.7 (2)	$\mathrm{C17}-\mathrm{C16-O3}$	$105 \cdot 1$ (3)
C4a-C10-12	$103 \cdot 6$ (3)	$\mathrm{C} 18-\mathrm{C1}-\mathrm{O} 3$	$109 \cdot 3$ (3)
$\mathrm{Cl0a-C10-C12}$	103.4 (2)	$\mathrm{Cl} 3-\mathrm{Ol}-\mathrm{Cl} 4$	116.4 (3)
C5-C10a-C8a	120.8 (3)	$\mathrm{Cl} 5-\mathrm{O} 3-\mathrm{Cl} 6$	116.8 (3)
C5-C10a-C10	$129 \cdot 3$ (3)		

$\mathrm{Cl1}-\mathrm{Cl} 2-\mathrm{Cl} 5-\mathrm{O} 4 \quad\left(\varphi_{2}\right)$ are $45 \cdot 6(4)$ and $-144.4(3)^{\circ}$, respectively, i.e. the stereochemistries of the $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$ systems are syn and anti for the $\mathrm{CO}_{2} \mathrm{Me}$ and $\mathrm{Co}_{2}{ }^{i} \mathrm{Pr}$ ester groups, respectively; the shortest non-bonded intramolecular contact between the ester groups is $\mathrm{O} 2 \cdots \mathrm{O} 3=2.918$ (3) \AA. The two ester groups are partially conjugated to the central double bond, but to slightly different extents $\left(\cos ^{2} \varphi_{1}\right.$ $=0.49, \cos ^{2} \varphi_{2}=0.66$). This partial conjugation in the α, β-unsaturated carbonyl system is reflected in the $s p^{2}-s p^{2}(\mathrm{Cl1}-\mathrm{Cl} 3$ and $\mathrm{C} 12-\mathrm{Cl} 5)$ single-bond lengths of 1.478 (4) and $1 \cdot 479$ (4) \AA, respectively. The values of the bond lengths reasonably suggest some extent of electron delocalization over the α, β-unsaturated carbonyl systems; the expected bond length for complete delocalization for such a system is 1.470 (2) \AA, with 1.497 (2) \AA indicating no significant electron delocalization (Allen, 1981b).

There is an additional strain in the product molecules relative to the starting material as a result of the cyclopentane-cyclopropane ring fusion. Bond angles within the cyclopropane rings are within expected values. The subject of substituent-induced bond-length asymmetry in cyclopropane (Δ) and the geometry of the substituent grouping $\mathrm{C}_{1}-R_{1}-R_{11}$ of Fig. 3 has received some attention in the literature (Allen, 1980, 1981b). Treatment of the geometrical data of the cyclopropane and its substituent groups in $\mathrm{Me} /{ }^{i} \mathrm{Pr}-\mathrm{pl}$ and $\mathrm{Me} /{ }^{i} \mathrm{Pr}-\mathrm{p} 2$ along the lines of the
analysis used in the above references (using the midpoints of the cyclopropane ring bonds, $M_{i j}$ opposite atoms $\mathrm{C}_{i j}$) shows that the torsion angle τ_{1} ($\mathrm{M} 11-\mathrm{Cl1}-\mathrm{C} 13-\mathrm{O} 2$) is -11.9° and τ_{2} ($M 12-\mathrm{Cl} 2-\mathrm{Cl} 5-\mathrm{O} 4$) is 62.9° for $\mathrm{Me} /{ }^{\circ} \mathrm{Pr}-\mathrm{pl}$, and 52.7 and 24.6° for $\mathrm{Me} / /^{\prime} \mathrm{Pr}$-p2 (Fig. 3). Accordingly, the $\mathrm{Cl} 3=\mathrm{O} 2$ bond in $\mathrm{Me} / / \mathrm{Pr}$-pl shows a cisbisection conformation with respect to the cyclopropane ring and the carbonyl group is expected to be conjugated to the cyclopropane ring, whereas $\mathrm{C} 15=\mathrm{O} 4$ should show no such conjugative ability; upper limits for effective conjugation are estimated at $\pm 15^{\circ}$ (Allen, 1980). No such conjugation of the Δ ring to the π-acceptor substituents is apparent in $\mathrm{Me} / \mathrm{Pr}-\mathrm{p} 2$. Evidence of conjugation of cyclopropane to π-acceptor substituents as we have in $\mathrm{Me} /{ }^{/} \mathrm{Pr}-\mathrm{pl}$ is sometimes reflected in systematic shortening of the distal bond and lengthening of vicinal bonds in the cyclopropane ring, but no such systematic bondlength asymmetry in the cyclopropane ring of Me / ${ }^{i}$ Pr-pl is apparent. However, the bond lengths

Fig. 2. Stereo diagrams (50% probability ellipsoids) and atomic numbering for (a) $\mathrm{Me} /^{\prime} \mathrm{Pr}$, (b) $\mathrm{Me} /^{/} \mathrm{Pr}-\mathrm{pl}$ and (c) $\mathrm{Me} /^{\mathrm{i}} \mathrm{Pr}-\mathrm{p} 2$.
$\mathrm{C}_{1}-R_{1}$ and $R_{1}-R_{11}$ (Fig. 3) do seem to indicate some features of conjugation and non-conjugation. The bond lengths C11-C13 [1.482 (6) \AA] and $\mathrm{C} 12-\mathrm{C} 15[1-504(5) \AA$] for $\mathrm{Me} / \mathrm{Pr}$-pl seem to suggest that $\mathrm{Cl} 3=\mathrm{O} 2$ is conjugated to the cyclopropane ring while $\mathrm{Cl} 5=\mathrm{O} 4$ is not. Admittedly, the differences in the bond lengths are hardly significant enough to warrant any firm conclusion. It is interesting to observe that the bond lengths $\mathrm{C} 11-\mathrm{C} 13$ [$1 \cdot 505$ (4) \AA] and $\mathrm{C} 12-\mathrm{C} 15$ [1.493 (4) $\AA \AA$ of $\mathrm{Me} / / \mathrm{Pr}-\mathrm{p} 2$ do not differ from each other, as would be expected from the torsion angles τ_{1} and τ_{2}, and both are in agreement with the expected value for a nonconjugated system. The corresponding literature values for these bond lengths in conjugated and non-conjugated systems are 1.484 (4) and $1 \cdot 506$ (6) \AA, respectively (Allen, 1980).

There are no exceptionally short intermolecular contacts in the crystal structures of these compounds although a few contacts are below the sum of the van der Waals radii of the atoms involved: $\mathrm{O} 4 \cdots \mathrm{H} 42 \cdot 54$, $\mathrm{H} 4 \cdots \mathrm{H} 17 c \quad 2.39$ and $\mathrm{H} 17 a \cdots \mathrm{H} 18 b \quad 2.27 \AA$ in $\mathrm{Me} /{ }^{\prime} \mathrm{Pr}-\mathrm{pl}$; O2 $\cdots \mathrm{H} 14 a \operatorname{l} 2.58 \AA$ in $\mathrm{Me} / / \mathrm{Pr}-\mathrm{p} 2$. No such contacts were observed in $\mathrm{Me} / \mathrm{i} \mathrm{Pr}$.

Structure-reactivity relationships

All the dibenzobarrelenes studied so far were found to undergo the di- π-methane reaction upon irradiation in solution and in the solid state (GarciaGaribay, 1988; Scheffer, Trotter, Garcia-Garibay \& Wireko, 1988). In the unsymmetrical 11,12-diester

(a)

(b)

(c)

Fig. 3. (a) Movement of an ester group during vinyl-benzo bridging. (b) Definition of angles ρ and ε. (c) Geometry of the cyclopropane substructure.
derivatives, two products (major and minor) are usually identified. The observed product ratios for $\mathrm{Me} / \mathrm{Pr}$ obtained upon photolysis in solution and in the solid state are shown in Fig. 4, where product B is the product resulting from an initial vinyl-benzo bridging of the vinyl C atom bearing the methyl ester group and product A is the regioisomer of B. $\mathrm{Me} /{ }^{/} \mathrm{Pr}-\mathrm{p} 1$ (major product) and $\mathrm{Me} /{ }^{\prime} \mathrm{Pr}-\mathrm{p} 2$ (minor product) correspond to product A and product B, respectively. Regioselectivity is higher in the solid state than in solution, and this is generally the case for unsymmetrical 11,12-derivatives where the ester substituents are both alkyl groups. Two factors, odd-electron stabilization and crystal-lattice steric effects, have been explored with the view of determining which factor best explains the formation of the major product in the solid state.

Electronic factors

An odd-electron stabilization mechanism predicts that the major product should result from an initial vinyl-benzo bridging at the vinyl C atom bearing the ester group (in this case C11 and the methyl ester) which is less conjugated to the central double bond. The other route (initial vinyl-benzo bridging at the more conjugated vinyl C atom) is less favorable for reasons of resonance stabilization (Demuth et al., 1981). The extent of odd-electron stabilization at a particular 'vinyl' C atom can be estimated from the conjugation of the ester group with the central $\mathrm{C}=\mathrm{C}$ double bond in the reactant molecule, the stabilization (Dewar, 1952) being taken as proportional to $\cos ^{2} \varphi$ where φ is the dihedral angle about the $\mathrm{C}-\mathrm{C}$ bond between a vinyl C atom and the carbonyl C atom attached to it. The angle defines the extent to

Fig. 4. Expected and observed products based on odd-electron stabilization mechanism ($\varphi_{1}, \varphi_{2}=\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$ torsion angles at E, E^{\prime}, respectively).
which the mean plane of the carbonyl group of the ester is out of the plane of the central double bond. The $\cos ^{2} \varphi$ values of the torsion angles, along with the expected reaction pathway leading to the formation of the major product based on the relative odd-electron stabilization considerations and the experimentally observed pathway, are presented in Fig. 4. It is clear that the argument fails to explain the results, since the predicted major product is actually observed to be the minor product. Thus, the biradical stabilization differences at the vinyl C atoms (brought about by the conformational rigidity of the ester groups in the solid state) do not appear to explain the regioselectivity of the photochemical process.

Steric factors

An alternative explanation for the observed regioselectivity involves steric considerations in the solid state. It is apparent from Fig. 3 that the initial bond formation entails a relatively large movement of the vinyl C atom and its attached ester group. Undoubtedly, there are some atomic displacements in the benzene rings and the non-bridging vinyl C atom (and its attached ester group) as well, but to a crude approximation these atoms may be regarded as relatively 'stationary'. Under these conditions, the initial bond formation may be regarded primarily as the movement of a vinyl C atom (and its attached ester group) towards a nearby 'stationary' aromatic C atom. The local steric surrounding of a particular vinyl C and its attached ester group would be an important factor in the ease of the movement necessary for the initial bond formation. The pathway leading to the formation of the major product in the solid state is expected to be an initial vinyl-benzo bridging at the vinyl C atom bearing the ester group which is less sterically hindered. Three approaches have been adopted for depicting the relative amount of free space around the ester groups: (a) qualitative visual inspection of the local packing differences around the ester groups, (b) calculation of the van der Waals intermolecular steric energy as a result of the movement of the ester groups, and (c) superposition of the structures of major and minor products on the structure of the starting material in order to determine the best molecular fit. The above three points will be considered in turn.

Examination of the crystal packing for $\mathrm{Me} / \mathrm{Pr}^{*}{ }^{*}$ indicates that the methyl ester group is more tightly surrounded by neighboring atoms than is the isopropyl group, particularly in the direction in which the methyl ester group would have to move to form the initial vinyl-benzo bridging. This suggests that

[^2]the preferred initial bond formation would involve the vinyl C atom bearing the sterically less hindered isopropyl ester group. This is consistent with path A which leads to the formation of the observed major product in the solid state.
In an attempt to quantify the local packing differences around the ester groups, the motions involved in the initial vinyl-benzo bridging of each of the ester groups were simulated and the resulting intermolecular steric energy was then calculated by using a locally written program (Evans, 1986). For Me/'Pr, the approach taken was as follows: a vector is defined about which a rotation is to be performed, in order to move a vinyl C atom and its attached ester group towards a nearby aromatic C atom for an initial bond formation to take place. For example, if we intend to move C11 and its attached ester group $M E$ in $\mathrm{Me} / / \mathrm{Pr}$ into a vinyl-benzo bridging position, the vector to use would be C9 to C12 (Fig. 2a); to move Cl 2 and its attached ester group $I S, \mathrm{Cl0}$ to C 11 would be defined as the vector around which a rotation would be performed. Taking the coordinates of the crystal structure of the reactant as the equilibrium position corresponding to 0° rotation, a clockwise rotation about the vector is defined as positive and an anticlockwise rotation is considered negative (see Fig. 5). The coordinates of all other atoms in the molecule are fixed and only the vinyl atom and its attached ester group are allowed to move; they constitute the 'mobile unit'. As the rotation is performed about the defined vector, the vinyl C atom of interest is gradually being brought into a bonding distance of a nearby aromatic C atom. In this particular example, if C10 and C11 is the vector, then a negative rotation about the vector should move C12 towards C4a while a positive rotation moves C12 towards C10a. At the same time, other atoms in the 'mobile unit', in this case the isopropyl ester, move against a 'fixed' environment. The rotation is performed in 2° increments and at each step the intermolecular steric interaction energy involving each atom in the 'mobile unit' and its neighboring atoms within a radius of $3.3 \AA$ is calculated using the 6-12 Lennard-Jones pairwise nonbonded potential function (Hagler, Huller \& Lifson, 1974). The sum of such energies for all the atoms in the 'mobile unit' constitutes the intermolecular steric energy for that ester group at that step. A similar treatment is applied to vinyl C atom C 11 and its attached methoxycarbonyl group ME. The result of such a calculation is shown in Fig. 5, which is a plot of intermolecular steric energy versus angle of rotation. The two approaches (free space by inspection and intermolecular steric energy) are expected to complement each other since molecular displacement towards available free space corresponds to a low energy process.

It is worth noting that, even though the vinyl \mathbf{C} atoms could in principle be moved into a $\mathrm{C}-\mathrm{C}$ bonding distance of about $1.54 \AA$ from a nearby aromatic \mathbf{C} atom, it is not necessary to do so. This is because of the crude rigid-lattice approximation involved in the analysis. As a result, very large unrealistic energy values are obtained before the vinyl C atom is close to bonding with a nearby aromatic C atom. However, the displacements that have been used are large enough to show a trend which is a useful probe for intermolecular energy effects on the reaction course of the compounds under investigation.

Comparing the overall energy profiles (Fig. 5), it is apparent that the profile of $M E$ is relatively steeper than the profile corresponding to the movement of $I S$. A relatively shallow energy profile corresponds to a lower energy process. Therefore, the major product on the basis of this analysis should involve an initial bond formation at the vinyl C atom bearing the isopropyl ester group. Thus, the expected major product on the basis of steric arguments is consistent with the experimental data and in accord with the conclusion arrived at via the qualitative visual inspection of the local environments of the ester groups.

Fig. 5. Intermolecular steric energy profile for $\mathrm{Me} /^{/ /} \mathrm{Pr}$. The plots show that the increase in steric energy during the initial vinylbenzo bridging step is relatively greater for bridging at the $\mathrm{CO}_{2} \mathrm{Me}$ vinyl C atom ($M E$), so that this would be (as observed) the less-favorable reaction pathway (pathway B in Fig. 4). $1 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}=4 \cdot 1868 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

A third indicator for the effect of the crystal lattice on the di- π-methane rearrangement of this class of compounds uses the idea of the reaction cavity introduced by Cohen (1975), which suggests that a reaction pathway which would lead to a product that can best be accommodated in the lattice of the starting material is usually favored in the solid state. Since the crystal structures of the major ($\mathrm{Me} / /^{\mathrm{i} P r-p l}$) and the minor ($\mathrm{Me} / / \mathrm{Pr}$-p2) products arising from the photolysis of $\mathrm{Me} / 2 \mathrm{Pr}$ were determined, it was interesting to verify whether or not the reaction cavity concept is upheld in the di- π-methane rearrangement of these diesters in the solid state. One way of testing this idea in our system is to determine which of the products (major versus minor) better resembles the shape and size of the reactant molecule. This approach involves the superposition of the major and the minor products on the reactant molecule. Using a best molecular fit program BMFIT (Nyburg, 1978) a product molecule is superimposed on a reactant molecule in the crystal lattice of the starting material. It is a 'rigid' fit in that there is an atomatom match-up between the product and the starting material without any conformation changes in the molecules. In this case the match-up is such that a particular atom number (e.g. C1) in the structure of

Fig. 6. Superposition of (a) $\mathrm{Me}^{i} \mathrm{Pr}^{2}-\mathrm{pl}$ and (b) $\mathrm{Me} /^{i} \mathrm{Pr}$-p2 on $\mathrm{Me} /{ }^{\prime} \mathrm{Pr}$.
the starting material should be superimposed on an equivalent atom (Cl) in the structure of the product without any conformational adjustments. It is therefore essential that equivalent atoms in the structures of the starting material and the product molecules have the same atomic numbering. Fig. 6 shows the results of such superpositions of the major product $\mathrm{Me} /{ }^{\prime} \mathrm{Pr}-\mathrm{pl}$ and the starting material $\mathrm{Me} / / \mathrm{Pr}$ on one hand, and the minor product $\mathrm{Me} /{ }^{/} \mathrm{Pr}$-p2 on the same starting material on the other. The ellipsoids of the non- H atoms of the starting material are shaded and the unshaded non-H atoms belong to the product molecule. A measure of the overlap between an atom in the product molecule and the corresponding atom in the starting material is given by the square of the distance (Δ^{2}) between the two atoms. The sum of all the displacements squared ($\sum \Delta^{2}$) gives the overall measure of fit.

It is apparent from Fig. 6 that in general the starting material and the products have rather similar shapes and common volumes of overlap. More importantly, there is a better overlap between the major product and the starting material than between the minor product and the starting material. The $\sum \Delta^{2}$ values are $84 \cdot 6 \AA^{2}$ for the $\mathrm{Me} / / \mathrm{Pr}-\mathrm{pl}: \mathrm{Me} / \mathrm{i} \mathrm{Pr}$ system and $132.8 \AA^{2}$ for the $\mathrm{Me} / / \mathrm{Pr}-\mathrm{p} 2: \mathrm{Me} / \mathrm{Pr}$ system. The unknown factor about this type of analysis is whether or not the conformation of the product as determined by X-ray crystallography is the same as when it was initially formed in the lattice of the starting material. For what it is worth, however, this analysis, like the previous two approaches, predicts a major product on the basis of the reactioncavity concept, and the expected product is consistent with the experimental result.

Thus, the correlation of structural and photochemical data has shown that the odd-electron stabilization concept does not seem to explain adequately the solid-state results for these compounds. Three types of analyses - visual inspection of packing environment, potential-energy calculations, and superposition of products on starting material - do complement each other in showing that the solidstate results are explicable on the basis of steric packing factors.

We thank the Natural Sciences and Engineering Research Council of Canada for financial support, and the University of British Columbia Computing Centre for assistance.

References

Allen, F. H. (1980). Acta Cryst. B36, 81-96.
Allen, F. H. (1981a). Acta Cryst. B37, 900-906.
Allen, F. H. (1981b). Acta Cryst. B37, 890-900.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). OrflS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA. Extensively modified by S. J. Rettig, Univ. of British Columbia, Canada (1976).
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). Orffe. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee, USA.
Ciganek, E. (1966). J. Am. Chem. Soc. 88, 2882-2883.
Cohen, M. D. (1975). Angew. Chem. Int. Ed. Engl. 14, 386-393.
COHEN, M. D., RON, I., SChMIDT, G. M. J. \& THOMAS, J. M. (1969). Nature (London), 224, 167-168.

Cohen, M. D. \& SChmidt, G. M. J. (1964). J. Chem. Soc. pp. 1996-2000.
demuth, m., Amrein, w., bender, C. o., Braslavsky, S. e., Burger, U., George, M. V., Lemmer, D. \& Schaffner, K. (1981). Tetrahedron, 37, 3245-3261.

Dewar, M. J. S. (1952). J. Am. Chem. Soc. 74, 3341-3345.
Evans, S. V. (1986). Program MOVE (interactive MOlecular parameter Variation Ensemble). Univ. of British Columbia, Vancouver, Canada.
Evans, S. V., Garcia-Garibay, M., Omkaram, N., Scheffer, J. R., Trotter, J. \& Wireko, F. C. (1986). J. Am. Chem. Soc. 108, 5648-5650.
Garcia-Garibay, M. (1988). PhD Thesis, Univ. of British Columbia, Vancouver, Canada.
Hagler, A. T., Huller, E. \& Lifson, S. (1974). J. Am. Chem. Soc. 96, 5319-5335.
Hixson, S. S., MARiano, P. S. \& Zimmerman, H. E. (1973). Chem. Rev. 73, 531-551.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99-102. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
main, P., Fiske, S. J., hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). multan80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Nyburg, S. C. (1978). Program BMFIT. Univ. of Toronto, Canada.
Ohash, y., Yanagi, K., Kurihara, T., Sasada, Y. \& Ohgo Y. (1981). J. Am. Chem. Soc. 103, 5805-5812.

Oliver, S. W., Fallon, G. D. \& Smith, T. D. (1986). Acta Cryst. C42, 1047-1048.
Scheffer, J. R., Trotiter, J., Garcia-Garibay, M. \& Wireko, F. C. (1988). Mol. Cryst. Liq. Cryst. Incl. Nonlinear Opt. 156, 63-84.
Thomas, J. M., Morsi, S. E. \& Desvergne J. P. (1977). Adv. Phys. Org. Chem. 15, 63-151.
Trotter, J. \& Wireko, F. C. (1990). Acta Cryst. C46, 103106.

Zimmerman h. e. (1980). Molecular Rearrangements in Ground and Excited States, edited by P. de Mayo, ch. 16. New York: Wiley-Interscience.
Zimmerman, H. E., Keck, G. E. \& Pflederer, J. L. (1976). J. Am. Chem. Soc. 98, 5574-5581.

[^0]: (c) 1990 International Union of Crystallography

[^1]: * Programs used include locally written programs and locally modified versions of MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980); ORFLS and ORFFE (Busing, Martin \& Levy, 1962, 1964), and ORTEPII (Johnson, 1976).
 \dagger Lists of anisotropic thermal parameters, H positions, torsion angles, bond distances and angles involving H atoms, and structure factors, together with packing diagrams, have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52276 (87 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * Packing diagrams have been deposited; see previous footnote.

